A reduced basis element method for the steady Stokes problem: Application to hierarchical flow systems
نویسندگان
چکیده
The reduced basis element method is a new approach for approximating the solution of problems described by partial differential equations. The method takes its roots in domain decomposition methods and reduced basis discretizations [8, 16, 17], and its applications extend to, for example, control and optimization problems. The basic idea is to first decompose the computational domain into a series of subdomains that are similar to a few reference domains (or generic computational parts). Associated with each reference domain are precomputed solutions corresponding to the same governing partial differential equation, but solved for different choices of some underlying parameter. In this work, the parameters are representing the geometric shape associated with a computational part. The approximation corresponding to a new shape is then taken to be a linear combination of the precomputed solutions, mapped from the reference domain for the part to the actual domain. We extend earlier work [14, 15] in this direction to solve incompressible fluid flow problems governed by the steady Stokes equations. Particular focus is given to constructing the basis functions, to the mapping of the velocity fields, to satisfying the inf-sup condition, and to “gluing” the local solutions together in the multidomain case [4]. We also demonstrate an algorithm for choosing the most ∗Corresponding author: [email protected] efficient precomputed solutions. Two-dimensional examples are presented for pipes, bifurcations, and couplings of pipes and bifurcations in order to simulate hierarchical flow systems.
منابع مشابه
Hierarchical Group Compromise Ranking Methodology Based on Euclidean–Hausdorff Distance Measure Under Uncertainty: An Application to Facility Location Selection Problem
Proposing a hierarchical group compromise method can be regarded as a one of major multi-attributes decision-making tool that can be introduced to rank the possible alternatives among conflict criteria. Decision makers’ (DMs’) judgments are considered as imprecise or fuzzy in complex and hesitant situations. In the group decision making, an aggregation of DMs’ judgments and fuzzy group compromi...
متن کاملNumerical treatment for nonlinear steady flow of a third grade fluid in a porous half space by neural networks optimized
In this paper, steady flow of a third-grade fluid in a porous half space has been considered. This problem is a nonlinear two-point boundary value problem (BVP) on semi-infinite interval. The solution for this problem is given by a numerical method based on the feed-forward artificial neural network model using radial basis activation functions trained with an interior point method. ...
متن کاملNumerical study of natural convection heat transfer of Al2 O3/Water nanofluid in a Γ-shaped microchannel
Finite-volume procedure is presented for solving the natural convection of the laminar nanofluid flow in a Γ shaped microchannel in this article. Modified Navier-Stokes equations for nanofluids are the basic equations for this problem. Slip flow region, including the effects of velocity slip and temperature jump at the wall, are the main characteristics of flow in the slip flow region. Steady ...
متن کاملSteady Flow Through Modeled Glottal Constriction
The airflow in the modeled glottal constriction was simulated by the solutions of the Navier-Stokes equations for laminar flow, and the corresponding Reynolds equations for turbulent flow in generalized, nonorthogonal coordinates using a numerical method. A two-dimensional model of laryngeal flow is considered and aerodynamic properties are calculated for both laminar and turbulent steady flows...
متن کاملMeshless Local Petrov-Galerkin Method– Steady, Non-Isothermal Fluid Flow Applications
Abstract : The meshless local Petrov-Galerkin method with unity as the weighting function has been applied to the solution of the Navier-Stokes and energy equations. The Navier-Stokes equations in terms of the stream function and vorticity formulation together with the energy equation are solved for a driven cavity flow for moderate Reynolds numbers using different point distributions. The L2-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005